w^2+81=18w^2

Simple and best practice solution for w^2+81=18w^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for w^2+81=18w^2 equation:



w^2+81=18w^2
We move all terms to the left:
w^2+81-(18w^2)=0
We add all the numbers together, and all the variables
-17w^2+81=0
a = -17; b = 0; c = +81;
Δ = b2-4ac
Δ = 02-4·(-17)·81
Δ = 5508
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5508}=\sqrt{324*17}=\sqrt{324}*\sqrt{17}=18\sqrt{17}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{17}}{2*-17}=\frac{0-18\sqrt{17}}{-34} =-\frac{18\sqrt{17}}{-34} =-\frac{9\sqrt{17}}{-17} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{17}}{2*-17}=\frac{0+18\sqrt{17}}{-34} =\frac{18\sqrt{17}}{-34} =\frac{9\sqrt{17}}{-17} $

See similar equations:

| 32j=-576 | | 20-2r=-6r-20+12r | | 4=-4j=3j | | 4+3x=2x-11 | | 4+3x=2-11 | | T5x-x=x+16-x | | -96+13x=8x+49 | | 6w+16=92 | | 2b+b-3b+4b=4 | | 1/15x+1/18=11 | | 60x-26.2=0 | | 12x=4x-4 | | q/16=18 | | 4(2h+1.25)=18.20 | | 4y+12=15y-3 | | -7q-11q+14q=20 | | 31r=930 | | 65+75+2x=180 | | 9x-10=5x-14 | | 792=-11w | | 4+4n=-2 | | 9.3p+5.79=-10.16+2.2p+13.82 | | 36=6+15x | | v+-137=-605 | | 6.m-8=2(m+5) | | 7x+9x-9=(4x+2) | | x=(450-32)*5/9 | | -4k=-5k-17 | | Y=20x+67 | | 9+-1.5y=9+2y | | k-3k+10=-8k+10 | | 2x(x+3)x=48 |

Equations solver categories